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Abstract. A very simple lattice model is presented for mixtures of alkali metals and alkali 
halides, like Kx(KCI)l-I. The valence electrons are assumed lo be excluded f" lhe Wigner- 
Seitz spheres associated with the anions, while they are uniformly distributed over the cation 
Wgnerseitz spheres, The calculated excess volume of mixing turns out to be positive o\'er 
most of the concentration range, in qualitative agreement with experiment, provided the surface 
energy of the electrons, associated with the boundary of the anion WignerSeitz spheres, is 
taken into account. The results of this model differ considerably from earlier predictions based 
on linear electron screening theory. 

1. Introduction 

Solutions of alkali metals in alkali halide melts, of the form M,(MX),-,, where x 
denotes the mole fraction of metal, undergo a continuous metal-non-metal transition, as 
the concentration x varies from the pure metal end (x = I ,  metallic liquid) to the pure salt 
(x = 0, ionic liquid). This transition indirectly shows up in the qualitative change of the 
pair structure, as measured by neutron diffraction experiments [I], in the appearance of a 
miscibility gap for certain melts, like Kx(KCI)l-x, and in the rapid change of the collective 
density fluctuation spectra, as measured by inelastic neutron scattering experiments [2] or 
by molecular dynamics simulations [3]. 

The change in electronic structure renders a theoretical description of metal-salt 
solutions a difficult task A systematic but rather naive approach is to assume that the 
Coulombic interactions between ions are linearly screened by the gas of degenerate. valence 
electrons at all concentrations x .  This approach is known to be valid for the pure metal 
( x  = 1) [4], but becomes questionable in the presence of anions (n c: 1). Nonetheless 
linear screening theory, which is equivalent to second-order perturbation theory in the ion- 
electron coupling, has been applied to Kx(KCI)I-, solutions [5].  The resulting pair structure 
and phase diagram are in rough, qualitative agreement with experimental data, but the 
theory is incapable of reproducing the finer details, l i e  the long-wavelength concentration 
fluctuations, as probed by the small-angle diffraction experiments, or the magnitude and sign 
of the excess molar volume of mixing. Whereas the theory predicts large negative excess 
volumes at all concen@ations, careful thermodynamic measurements lead to a much smaller 
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positive excess volume at intermediate concentrations 161. This qualitative discrepancy 
between theory and experiment is almost certainly due to the inadequacy of the linear 
screening approximation, which treats anions and cations on an equal footing, while it is 
quite clear that the former strongly repel the valence electrons and the latter tend to build 
up an excess density of valence electrons in their viciniry. 

The aim of this paper is to present a very simple model which accounts for the anion- 
cation asymmetry and to show that this model is capable of predicting at least the right sign 
of the excess molar volume. 

2. The model 

One mole of M,@IX)l-, contains N I  = NA" M+ cations, N2 = (1 - x)NA" X- anions 
and No = N I  - Nz = xNAv valence electrons (NA" denotes Avogadro's number). In our 
model, the N = N I  + Nz ions are distributed on the N sites of a simple cubic lattice. 
Each ion is assumed to be fixed at the centre of a spherical WignerSeitz (ws) cell of 
volume U = V / N  and of radius a = (3~/4n) ' /~ .  The valence electrons occupy the volume 
V' = N l v  = V - N z v ,  i.e. they are assumed to he excluded from the ws cells associated 
with the anions. The effective electron density is hence 

and the usual dimensionless electron density parameter is 

where 
the ion density, namely: 

is the Bohr radius. It is convenient to define a similar parameter associated with 

In the pure salt limit ( x  -+ 0), r, diverges, as there are no valence electrons left, while R, 
remains finite. Each ws cell associated with an anion carries a charge -e, while each cell 
associated with a cation carries a charge +e (1 - x ) .  Moreover, the valence electrons are 
assumed to be uniformly spread over the cation ws cell, i.e. they are not polarized by the 
cation at the centre. Neglecting van der Waals interactions between ions, the total energy 
U of the model is the sum of an electrostatic Madelung term U,. a Born repulsion term 
U B  between neighbouring ions of opposite charge, and an electronic term U,] 

(4) U = UM + UB + uel. 

These three terms are evaluated as follows. 
(i) The Madelung energy results from N I  positive point ions of effective charge e (1 - x ) ,  

and Nz = ( I  - x ) N l  negative point ions of charge -e, which are distributed on a simple 
cubic lattice. The Madelung energy is of the form 

where u ( x )  = 0 for x = 1, while for x = 0,  u ( x )  equals the Madelung constant of the 
NaCl structure, i.e. 0.8738 x (3/4n)'13 = 0.54206. For intermediate concentrations, u ( x )  
has been determined by choosing among all possible distributions of positive and negative 
ions on the simple cubic lattice, the one that yields the lowest electrostatic energy. The 
optimization was achieved by starting from the known lowest-energy structure at x = 0. 
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The metal concentration was then progressively increased and oppositely charged ions were 
permuted within a zero-temperature Monte Carlo scheme for periodic samples of N = 64 
and 216 ions. The results of these calculations are plotted in figure 1 and may be fitted to 
a simple parabolic form according to 

113 
u ( x )  = ($) [0.8738 - 1.2374~ + 0.3636~~1. 

The Madelung energy in Rydberg units, which are used throughout, becomes 

(6) 
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Figure 1. Madelung energy, as defined in (3, multiplied by (4r/3)‘I3 versus mtal 
concenuation x. Thus, -&IN is sven in uniD ofe2/d, whered is Ihe cubic lattice constant. 
The black dots are the results hnm the Monte Carlo optimization for a periodic sample of M 
particles, while the open triangles are for a sample of 216 particles. 

(ii) The Born term results from the exponential repulsion between oppositely charged 
nearest-neighbour ions. Each cation is surrounded, on average, by v( l  -x ) / (~ -x)  anions. 
For a simple cubic lattice the coordiation number v is equal to 6.The Born repulsion energy 
per ion in Rydberg units reads: 

The reduced parameters for a KC1 pair are taken at their usual Tosi-Fumi [7] values, i.e. 
A; = 131.26 and CY = 2.530. 

(iii) The electronic contribution to the energy is the sum of a bulk term and a surface 
term. The bulk term corresponds to the N I  partially filled ws cells associated with the 
cations. The surface term results from the NZ empty WS cells associated with the anions, 
which may be regarded as spherical cavities ‘cut’ into the electronic ‘jelliu”: 

(9) U: = N1drr) + Nzdrd .  
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The bulk energy e, and the surface energy may be taken at their ground state 
values, since the electron Fermi temperature TF far exceeds the thermodynamic temperature 
(T Y 103K), except at very low metal concentration (rs >> I), where the electronic 
contribution becomes vanishingly small. These ground state values depend only on the 
density parameter r,. 

Since the fractional number of valence electrons in each cation ws cell is x ,  the bulk 
energy cb(rs) is of the form 

(10) 

where g ( r s )  is the ground state energy per electron of the uniform jellium, ccir(rS) the 
interaction energy of the electron gas with the cation at the centre of the spherical ws 
cell and ccOd(rs) is the Coulomb energy of the electron gas uniformly distributed over this 
cell. The ground state energy per electron q,(rS) splits into the usual kinetic, exchange and 
correlation contributions and reads in Rydberg units as follows: 

c d r J  = xco(rs) + d r s )  + cmudrs) 

For cwrr(rs) we have used the standard parametrization of the Monte Carlo data of Ceperley 
and Alder [8]:  

with y = -0.1423, PI = 1.0529 and & = 0.3334. Assuming a simple Ashcroft 'empty 
core' ion-electron pseudopotential with core radius r, 141, the 'extemal' contribution reads: 

where r, is in atomic units. Finally, the Coulomb contribution can easily be calculated: 

6 x z  
ECD"l = -- 5 R.' 

The surface energy cs(rs) in (9) is the product of the surfaces of a WS cavity and the surface 
energy U of the jellium model. If the latter is expressed in Rydbergs divided by the square 
of the Bohr radius ag. the surface energy cS(rs) is 

cS(rS) = su = 4?rR,20. (15) 

U has been calculated for a planar interface [9] and the results for r, > 5 ,  which are relevant 
in the present study, may be approximately fitted by the simple power law 

with 4 = 2.75 and a0 N lo-* Rydlai. However, curvature corrections are expected to be 
quite important in view of the atomic size of the WS spheres, so it is preferable to treat the 
factor uo as an adjustable parameter in the subsequent calculations. 

given by formulae (10)-(16), the electronic energy per ion finally 
reads 

With cb(rs) and 
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3. Concentration dependence of the excess molar volume 

The molar volume V, at constant pressure P is calculated for each concentration x by 
solving the equation 

where R, = X ' / ~ T ~ ,  P* = Pa:/ez is the imposed pressure in atomic units and U*/N is 
the total energy per ion in Rydbergs, as calculated along the lines laid out in the previous 
section. From the value of Rs which solves (18). the molar volume V, may be calculated 
according to 

(19) 
In the limiting case x = 0 (pure salt), the electronic contribution vanishes and with the Born 
repulsion parameters appropriate for KCI a molar volume V , ( x  = 0) of 39 cm3 is found 
at zero pressure (P* = 0 in (18)). This lies about 10 cm3 below the experimental value at 
T = 1123 K [6]. 

This discrepancy should not be surprising, since the present lattice theory amounts to a 
zero-temperature calculation. The difference between theory and experiment can hence be 
traced back to thermal expansion and to the volume change on melting, which is particularly 
large in KCl, nearly 20%. 

In the pure metal limit, the calculated molar volume depends sensitively on the 
pseudopotential radius r,. The standard value for r, is determined from conductivity 
measurements at melting (i.e. close to room temperature) and is equal to 2.23 in atomic 
units. This value for r, leads to a molar volume at zero pressure of about 41 cm3, which 
lies roughly 20 cm3 below the experimental values [6]. However, there is no compelling 
reason for which the phenomenological value of r, should be the same at room temperature 
and at T = 1123 K. Hence, we have rescaled r, in order to achieve a molar volume of 
the pure metal which lies about 10 cm3 below the experimental value, as was also the case 
for the pure salt. For the pure metal a molar volume V ,  of 49 cm3 is obtained by using 
r, = 2.4 atomic units. This value for r, was kept throughout our calculations. 

For intermediate concentrations (0 < x c l), the surface energy U of the electron gas 
tuns out to play a crucial role. If this term is neglected in the electronic contribution to 
the energy (see (9)), the excess molar volume 

V, = N.4"(2 -x)4na3/3 = 0.3733(2 - x)R: cm3. 

AV,(P", x )  = V,(P*,  x )  - xV,(P*, x = 1)  - (1 - x)V,(P', x = 0) (20) 
turns out to be invariably negative as shown in figure 2. This situation, which contradicts 
the experimental findings [6], is reminiscent of the result obtained from linear screening 
theory [SI. However, the absolute values of the excess molar volume are considerably 
smaller than in the latter case and this points, hence, to an improvement due to the 
approximate inclusion of non-linear screening effects within the present model. 

Using (15) and (16), the surface energy per electron in Rydbergs reads 

where so N 0.132, for a planar surface. However, as pointed out earlier, this value is 
irrelevant in view of the strong curvature of the ws spheres. We make the assumption that 
the functional form of &,) remains the same for a curved interface, but that curvature 
renormalizes the prefactor SO. Since the radius of the ws sphere changes only slightly in 
going from the pure metal ( x  = 1) to the pure salt ( x  = 0), a constant value of SO is 



2134 M Dijkstra et a1 

50.0 

45.0 

40.0 

so = 0.000 - 

35.0 
0.0 0.2 0.4 0.6 0.8 1.0 

A 
Figure 2. Molar volume V, (in cm’) versus metal concentntion x ,  calculated with different 
values for the surface energy scale factor so in (21): so = 0 (full curve), 0.396 (dashed curve) 
and 0.792 Ryd (dasheddotted curve). 

assumed. Molar volumes calculated with two different values of so (equal to three and six 
times the planar surface value) are compared in figure 2 with the predictions of the theory 
when so = 0. It shows that AV, becomes increasingly positive, at least on the metal-rich 
side, as SO increases. When SO = 0.792, AV,,, is positive over most of the concentration 
range in qualitative agreement with experiment. 

The influence of the pressure on the molar volume may be expected to be strongly 
underestimated in our zero-temperature model, which should be much less compressible 
than the melt above IO3 K. Indeed we found that, in order to reproduce the experimentally 
observed variations of the molar volume with pressure [6], the expenmental pressures had 
to be multiplied by roughly a factor of 5. ?he x-dependence of the resulting molar volume, 
calculated with so = 0.792, is plotted in figure 3 for P = 0, 4000 and 8000 bar. 

4. Discussion 

The present simple lattice model for metal-salt solution has been designed to account in 
a highly phenomenological way for non-linear screening of the ionic Coulomb interactions 
by valence electrons. Once the interaction parameters have been fixed to ensure reasonable 
molar volumes of the pure phases (bearing in mind that this is a zero-temperature 
calculation), the only adjustable parameter is the scale of the surface energy of the electron 
gas (jellium). It is shown that positive excess molar volumes over most or all of the 
concentration range are obtained for reasonable values of the surface energy. However, the 
agreement with experimental molar volume data can only be regarded as, at best, qualitative. 
These data indicate vanishing excess molar volumes AV,,, in the vicinity of the pure phases 
( x  Y 1 and x 2 0). whereas the present calculation predicts a rapid increase of A V ,  as 
x departs from 1. On the salt-rich side, the model leads to small negative values of AVm, 
other than for sufficiently large surface energy scales which strongly exaggerate the absolute 
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Figure 3. Molar volume V, (in an3) versus metal concentration x, for P = 0 (upper ctwe). 
4000 (middle curve) and 8000 bar (lower curve). 

values of A V , .  It is interesting to note that a cross-over from positive to negative molar 
volumes on the salt-rich side was in fact reported in preliminary measurements [IO]. This 
was not confirmed by subsequent experiments of the same authors [6], although their error 
bars (roughly AV,,,/V, 2: 1%) do not completely rule out such a behaviour. It should also 
be noted that with the choice of SO = 0.792 Ryd for the scale factor of the surface energy, 
the maximum excess molar volume is about 3 cm3, which is roughly a factor two larger 
than the experimental values. This is probably again a consequence of the zero-temperature 
nature of the calculation. 

The present model could be refined in many ways. Thermal expansion effects could 
be included, at least at a mean field level. Polarization of the electron density inside the 
cation ws spheres could be described withii a simple density functional formulation. More 
importantly, a more accurate treatment of the surface energy, beyond the rescaled ansatz in 
(21), would be desirable, since the molar volume is very sensitive to this energy. Finally 
localized electron states, like F cenfxs, could also be accommodated in the present model 
by introducing a third category of ws cells containing no ion. However, such refinements 
would necessarily spoil the simplicity of the present calculation, which already leads to 
the desired qualitative result, namely a positive excess volume of the right magnitude in 
contrast to a linear screening description. 
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